Proof: Substitution 8
Let's prove the following theorem:
if the following are true:
    
    
    
    - a + b = c
- a = d
then d + b = c
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | a + b = c | 
|---|---|
| 2 | a = d | 
| # | Claim | Reason | 
|---|---|---|
| 1 | b + a = c | if a + b = c, then b + a = c | 
| 2 | c = b + a | if b + a = c, then c = b + a | 
| 3 | c = b + d | if a = d and c = b + a, then c = b + d | 
| 4 | b + d = d + b | b + d = d + b | 
| 5 | c = d + b | if b + d = d + b and c = b + d, then c = d + b | 
| 6 | d + b = c | if c = d + b, then d + b = c | 
Comments
Please log in to add comments