Proof: Inequality Greater Than
Let's prove the following theorem:
if b > a, then b + c > a + c
Proof:
Given
| 1 | b > a |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | a < b | if b > a, then a < b |
| 2 | a + c < b + c | if a < b, then a + c < b + c |
| 3 | b + c > a + c | if a + c < b + c, then b + c > a + c |
Comments
Please log in to add comments