Proof: Equation a
Let's prove the following theorem:
((a + c) + d) + b = ((b + c) + a) + d
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | (a + c) + d = (c + a) + d | (a + c) + d = (c + a) + d |
| 2 | ((a + c) + d) + b = ((c + a) + d) + b | if (a + c) + d = (c + a) + d, then ((a + c) + d) + b = ((c + a) + d) + b |
| 3 | ((c + a) + d) + b = (c + a) + (d + b) | ((c + a) + d) + b = (c + a) + (d + b) |
| 4 | d + b = b + d | d + b = b + d |
| 5 | (c + a) + (d + b) = (c + a) + (b + d) | if d + b = b + d, then (c + a) + (d + b) = (c + a) + (b + d) |
| 6 | (c + a) + (b + d) = ((c + a) + b) + d | (c + a) + (b + d) = ((c + a) + b) + d |
| 7 | (c + a) + b = (b + c) + a | (c + a) + b = (b + c) + a |
| 8 | ((c + a) + b) + d = ((b + c) + a) + d | if (c + a) + b = (b + c) + a, then ((c + a) + b) + d = ((b + c) + a) + d |
| 9 | ((a + c) + d) + b = ((b + c) + a) + d | if ((c + a) + b) + d = ((b + c) + a) + d and (c + a) + (b + d) = ((c + a) + b) + d and (c + a) + (d + b) = (c + a) + (b + d) and ((c + a) + d) + b = (c + a) + (d + b) and ((a + c) + d) + b = ((c + a) + d) + b, then ((a + c) + d) + b = ((b + c) + a) + d |
Comments
Please log in to add comments