Proof: Algebra2
Let's prove the following theorem:
if the following are true:
- a = ((b + c) + d) + e
- b = x + y
then a = (((x + y) + c) + d) + e
Proof:
Given
| 1 | a = ((b + c) + d) + e |
|---|---|
| 2 | b = x + y |
| # | Claim | Reason |
|---|---|---|
| 1 | b + c = (x + y) + c | if b = x + y, then b + c = (x + y) + c |
| 2 | (b + c) + d = ((x + y) + c) + d | if b + c = (x + y) + c, then (b + c) + d = ((x + y) + c) + d |
| 3 | a = (((x + y) + c) + d) + e | if (b + c) + d = ((x + y) + c) + d and a = ((b + c) + d) + e, then a = (((x + y) + c) + d) + e |
Comments
Please log in to add comments