Proof: Converseofpowersubstitution
Let's prove the following theorem:
if bm = bn, then m = n
Proof:
Given
| 1 | bm = bn |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | logb(bm) = m | logb(bm) = m |
| 2 | logb(bn) = n | logb(bn) = n |
| 3 | logb(bm) = logb(bn) | if bm = bn, then logb(bm) = logb(bn) |
| 4 | m = n | if logb(bn) = n and logb(bm) = m and logb(bm) = logb(bn), then m = n |
Comments
Please log in to add comments