Proof: Two Angles Equal Then Isosceles
Let's prove the following theorem:
if m∠YXZ = m∠XYZ, then distance ZX = distance ZY
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | m∠PXZ = m∠YXZ | if m∠XPY = 180, then m∠PXZ = m∠YXZ |
| 2 | m∠PYZ = m∠XYZ | if m∠XPY = 180, then m∠PYZ = m∠XYZ |
| 3 | m∠PXZ = m∠XYZ | if m∠PXZ = m∠YXZ and m∠YXZ = m∠XYZ, then m∠PXZ = m∠XYZ |
| 4 | m∠PXZ = m∠PYZ | if m∠PXZ = m∠XYZ and m∠PYZ = m∠XYZ, then m∠PXZ = m∠PYZ |
| 5 | m∠XZP = m∠PZY | if ray ZP bisects ∠XZY, then m∠XZP = m∠PZY |
| 6 | m∠XZP = m∠YZP | if m∠XZP = m∠PZY, then m∠XZP = m∠YZP |
| 7 | distance ZP = distance ZP | distance ZP = distance ZP |
| 8 | △XZP ≅ △YZP | if m∠PXZ = m∠PYZ and m∠XZP = m∠YZP and distance ZP = distance ZP, then △XZP ≅ △YZP |
| 9 | distance ZX = distance ZY | if △XZP ≅ △YZP, then distance ZX = distance ZY |
Comments
Please log in to add comments