Proof: Similar Distances 2
Let's prove the following theorem:
if △ABC ∼ △XYZ, then (distance CB) / (distance ZY) = (distance BA) / (distance YX)
Proof:
Given
| 1 | △ABC ∼ △XYZ |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | (distance CB) / (distance ZY) = (distance CA) / (distance ZX) | if △ABC ∼ △XYZ, then (distance CB) / (distance ZY) = (distance CA) / (distance ZX) |
| 2 | (distance CA) / (distance ZX) = (distance BA) / (distance YX) | if △ABC ∼ △XYZ, then (distance CA) / (distance ZX) = (distance BA) / (distance YX) |
| 3 | (distance CB) / (distance ZY) = (distance BA) / (distance YX) | if (distance CB) / (distance ZY) = (distance CA) / (distance ZX) and (distance CA) / (distance ZX) = (distance BA) / (distance YX), then (distance CB) / (distance ZY) = (distance BA) / (distance YX) |
Comments
Please log in to add comments