Proof: Minimum Example
Let's prove the following theorem:
minimum value of stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] = [ 0, [ ] ]
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | [ 0, [ ] ] is less than [ 1, [ ] ] | [ 0, [ ] ] is less than [ 1, [ ] ] |
| 2 | minimum value of stack [ [ 1, [ ] ], [ ] ] = [ 1, [ ] ] | minimum value of stack [ [ 1, [ ] ], [ ] ] = [ 1, [ ] ] |
| 3 | [ 1, [ ] ] = minimum value of stack [ [ 1, [ ] ], [ ] ] | if minimum value of stack [ [ 1, [ ] ], [ ] ] = [ 1, [ ] ], then [ 1, [ ] ] = minimum value of stack [ [ 1, [ ] ], [ ] ] |
| 4 | [ 0, [ ] ] is less than [ 1, [ ] ] = [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]) | if [ 1, [ ] ] = minimum value of stack [ [ 1, [ ] ], [ ] ], then [ 0, [ ] ] is less than [ 1, [ ] ] = [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]) |
| 5 | [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]) | if [ 0, [ ] ] is less than [ 1, [ ] ] and [ 0, [ ] ] is less than [ 1, [ ] ] = [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]), then [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]) |
| 6 | minimum value of stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] = [ 0, [ ] ] | if [ 0, [ ] ] is less than (minimum value of stack [ [ 1, [ ] ], [ ] ]), then minimum value of stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] = [ 0, [ ] ] |
Comments
Please log in to add comments