Proof: Maximum Index One Element Example
Let's prove the following theorem:
index of the maximum value in stack [ x, [ ] ] = 0
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | index of the maximum value in stack [ x, [ ] ] = index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] | index of the maximum value in stack [ x, [ ] ] = index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] |
| 2 | maximum value in stack [ x, [ ] ] = x | maximum value in stack [ x, [ ] ] = x |
| 3 | index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] = index of value x in [ x, [ ] ] | if maximum value in stack [ x, [ ] ] = x, then index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] = index of value x in [ x, [ ] ] |
| 4 | index of value x in [ x, [ ] ] = 0 | index of value x in [ x, [ ] ] = 0 |
| 5 | index of the maximum value in stack [ x, [ ] ] = 0 | if index of the maximum value in stack [ x, [ ] ] = index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] and index of value (maximum value in stack [ x, [ ] ]) in [ x, [ ] ] = index of value x in [ x, [ ] ] and index of value x in [ x, [ ] ] = 0, then index of the maximum value in stack [ x, [ ] ] = 0 |
Comments
Please log in to add comments