Proof: Add a Number to Both Sides
Let's prove the following theorem:
if a + 90 = 180, then a = 90
First we use the Additive Property of Equality to claim that:
a + 90 + -90 = 180 + -90
Then we show that:
- left side reduces to a.
- right side reduces to 90.
Proof:
Given
| 1 | a + 90 = 180 |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | (a + 90) + (-90) = 180 + (-90) | if a + 90 = 180, then (a + 90) + (-90) = 180 + (-90) |
| 2 | 90 + (-90) = 0 | 90 + (-90) = 0 |
| 3 | (a + 90) + (-90) = a + (90 + (-90)) | (a + 90) + (-90) = a + (90 + (-90)) |
| 4 | a + (90 + (-90)) = a + 0 | if 90 + (-90) = 0, then a + (90 + (-90)) = a + 0 |
| 5 | a + 0 = a | a + 0 = a |
| 6 | a + (90 + (-90)) = a | if a + 0 = a and a + (90 + (-90)) = a + 0, then a + (90 + (-90)) = a |
| 7 | (a + 90) + (-90) = a | if a + (90 + (-90)) = a and (a + 90) + (-90) = a + (90 + (-90)), then (a + 90) + (-90) = a |
| 8 | 180 + (-90) = 90 | 180 + (-90) = 90 |
| 9 | a = 90 | if 180 + (-90) = 90 and (a + 90) + (-90) = a and (a + 90) + (-90) = 180 + (-90), then a = 90 |
Comments
Please log in to add comments