Proof: Add 6 Numbers
Let's prove the following theorem:
((a + b) + c) + ((d + e) + f) = ((((a + b) + c) + d) + e) + f
Proof:
| # | Claim | Reason |
|---|---|---|
| 1 | ((a + b) + c) + ((d + e) + f) = (((a + b) + c) + (d + e)) + f | ((a + b) + c) + ((d + e) + f) = (((a + b) + c) + (d + e)) + f |
| 2 | ((a + b) + c) + (d + e) = (((a + b) + c) + d) + e | ((a + b) + c) + (d + e) = (((a + b) + c) + d) + e |
| 3 | (((a + b) + c) + (d + e)) + f = ((((a + b) + c) + d) + e) + f | if ((a + b) + c) + (d + e) = (((a + b) + c) + d) + e, then (((a + b) + c) + (d + e)) + f = ((((a + b) + c) + d) + e) + f |
| 4 | ((a + b) + c) + ((d + e) + f) = ((((a + b) + c) + d) + e) + f | if (((a + b) + c) + (d + e)) + f = ((((a + b) + c) + d) + e) + f and ((a + b) + c) + ((d + e) + f) = (((a + b) + c) + (d + e)) + f, then ((a + b) + c) + ((d + e) + f) = ((((a + b) + c) + d) + e) + f |
Comments
Please log in to add comments