Proof: SAS Sides
Let's prove the following theorem:
if m∠ABC = 180 and m∠DCB = 180 and ∠XAC is a right angle and ∠YDB is a right angle and distance XA = distance YD and distance AB = distance DC, then distance XC = distance YB
Proof:
Given
| 1 | m∠ABC = 180 |
|---|---|
| 2 | m∠DCB = 180 |
| 3 | ∠XAC is a right angle |
| 4 | ∠YDB is a right angle |
| 5 | distance XA = distance YD |
| 6 | distance AB = distance DC |
| # | Claim | Reason |
|---|---|---|
| 1 | distance BC = distance CB | distance BC = distance CB |
| 2 | distance AC = (distance AB) + (distance BC) | if m∠ABC = 180, then distance AC = (distance AB) + (distance BC) |
| 3 | distance AC = (distance DC) + (distance BC) | if distance AC = (distance AB) + (distance BC) and distance AB = distance DC, then distance AC = (distance DC) + (distance BC) |
| 4 | distance AC = (distance DC) + (distance CB) | if distance AC = (distance DC) + (distance BC) and distance BC = distance CB, then distance AC = (distance DC) + (distance CB) |
| 5 | distance DB = (distance DC) + (distance CB) | if m∠DCB = 180, then distance DB = (distance DC) + (distance CB) |
| 6 | distance AC = distance DB | if distance AC = (distance DC) + (distance CB) and distance DB = (distance DC) + (distance CB), then distance AC = distance DB |
| 7 | m∠XAC = m∠YDB | if ∠XAC is a right angle and ∠YDB is a right angle, then m∠XAC = m∠YDB |
| 8 | △XAC ≅ △YDB | if distance XA = distance YD and m∠XAC = m∠YDB and distance AC = distance DB, then △XAC ≅ △YDB |
| 9 | distance XC = distance YB | if △XAC ≅ △YDB, then distance XC = distance YB |
Comments
Please log in to add comments