Proof: Interior Angles Then Rectangle
Let's prove the following theorem:
if WXYZ is a parallelogram and m∠YZW = m∠ZWX, then WXYZ is a rectangle
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | WX || ZY | if WXYZ is a parallelogram, then WX || ZY |
| 2 | XW || YZ | if WX || ZY, then XW || YZ |
| 3 | YZ || XW | if XW || YZ, then YZ || XW |
| 4 | ∠YZW and ∠ZWX are supplementary | if YZ || XW, then ∠YZW and ∠ZWX are supplementary |
| 5 | (m∠YZW) + (m∠ZWX) = 180 | if ∠YZW and ∠ZWX are supplementary, then (m∠YZW) + (m∠ZWX) = 180 |
| 6 | (m∠YZW) + (m∠YZW) = 180 | if (m∠YZW) + (m∠ZWX) = 180 and m∠YZW = m∠ZWX, then (m∠YZW) + (m∠YZW) = 180 |
| 7 | m∠YZW = 90 | if (m∠YZW) + (m∠YZW) = 180, then m∠YZW = 90 |
| 8 | ∠YZW is a right angle | if m∠YZW = 90, then ∠YZW is a right angle |
| 9 | WXYZ is a rectangle | if WXYZ is a parallelogram and ∠YZW is a right angle, then WXYZ is a rectangle |
Comments
Please log in to add comments