Proof: If Bisector Then Parallelogram
Let's prove the following theorem:
if distance WP = distance PY and distance XP = distance PZ and m∠WPY = 180 and m∠XPZ = 180, then WXYZ is a parallelogram
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | m∠WPX = m∠YPZ | if m∠WPY = 180 and m∠XPZ = 180, then m∠WPX = m∠YPZ |
| 2 | distance WP = distance YP | if distance WP = distance PY, then distance WP = distance YP |
| 3 | distance PX = distance PZ | if distance XP = distance PZ, then distance PX = distance PZ |
| 4 | △WPX ≅ △YPZ | if distance WP = distance YP and m∠WPX = m∠YPZ and distance PX = distance PZ, then △WPX ≅ △YPZ |
| 5 | distance WX = distance YZ | if △WPX ≅ △YPZ, then distance WX = distance YZ |
| 6 | m∠XWP = m∠ZYP | if △WPX ≅ △YPZ, then m∠XWP = m∠ZYP |
| 7 | m∠ZYP = m∠PWX | if m∠XWP = m∠ZYP, then m∠ZYP = m∠PWX |
| 8 | m∠ZYP = m∠ZYW | if m∠WPY = 180, then m∠ZYP = m∠ZYW |
| 9 | m∠ZYW = m∠PWX | if m∠ZYP = m∠ZYW and m∠ZYP = m∠PWX, then m∠ZYW = m∠PWX |
| 10 | m∠PWX = m∠YWX | if m∠WPY = 180, then m∠PWX = m∠YWX |
| 11 | m∠ZYW = m∠YWX | if m∠ZYW = m∠PWX and m∠PWX = m∠YWX, then m∠ZYW = m∠YWX |
| 12 | ZY || WX | if m∠ZYW = m∠YWX, then ZY || WX |
| 13 | WX || ZY | if ZY || WX, then WX || ZY |
| 14 | WXYZ is a parallelogram | if WX || ZY and distance WX = distance YZ, then WXYZ is a parallelogram |
Comments
Please log in to add comments