Proof: If Angles Congruent Then Parallelogram
Let's prove the following theorem:
if m∠XYZ = m∠ZWX and m∠WXY = m∠YZW, then WXYZ is a parallelogram
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | quadrilateral WXYZ is convex | if m∠WXY = m∠YZW and m∠XYZ = m∠ZWX, then quadrilateral WXYZ is convex |
| 2 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 | if quadrilateral WXYZ is convex, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 |
| 3 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠ZWX) = 360 and m∠XYZ = m∠ZWX, then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360 |
| 4 | ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY) | if m∠WXY = m∠YZW, then ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY) |
| 5 | (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) | if ((m∠WXY) + (m∠XYZ)) + (m∠YZW) = ((m∠WXY) + (m∠XYZ)) + (m∠WXY), then (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) |
| 6 | (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360 | if (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) and (((m∠WXY) + (m∠XYZ)) + (m∠YZW)) + (m∠XYZ) = 360, then (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360 |
| 7 | (m∠WXY) + (m∠XYZ) = 180 | if (((m∠WXY) + (m∠XYZ)) + (m∠WXY)) + (m∠XYZ) = 360, then (m∠WXY) + (m∠XYZ) = 180 |
| 8 | (m∠WXY) + (m∠ZYX) = 180 | if (m∠WXY) + (m∠XYZ) = 180, then (m∠WXY) + (m∠ZYX) = 180 |
| 9 | ∠WXY and ∠ZYX are supplementary | if (m∠WXY) + (m∠ZYX) = 180, then ∠WXY and ∠ZYX are supplementary |
| 10 | WX || ZY | if ∠WXY and ∠ZYX are supplementary, then WX || ZY |
| 11 | (m∠WXY) + (m∠ZWX) = 180 | if (m∠WXY) + (m∠XYZ) = 180 and m∠XYZ = m∠ZWX, then (m∠WXY) + (m∠ZWX) = 180 |
| 12 | (m∠ZWX) + (m∠WXY) = 180 | if (m∠WXY) + (m∠ZWX) = 180, then (m∠ZWX) + (m∠WXY) = 180 |
| 13 | m∠WXY = m∠YXW | m∠WXY = m∠YXW |
| 14 | (m∠ZWX) + (m∠YXW) = 180 | if (m∠ZWX) + (m∠WXY) = 180 and m∠WXY = m∠YXW, then (m∠ZWX) + (m∠YXW) = 180 |
| 15 | ∠ZWX and ∠YXW are supplementary | if (m∠ZWX) + (m∠YXW) = 180, then ∠ZWX and ∠YXW are supplementary |
| 16 | ZW || YX | if ∠ZWX and ∠YXW are supplementary, then ZW || YX |
| 17 | WZ || XY | if ZW || YX, then WZ || XY |
| 18 | WXYZ is a parallelogram | if WX || ZY and WZ || XY, then WXYZ is a parallelogram |
Comments
Please log in to add comments