Proof: Parallel Then Corresponding Short 2
Let's prove the following theorem:
if WX || YZ and m∠WYR = 180, then m∠ZYR = m∠XWY
Proof:
Given
| 1 | WX || YZ |
|---|---|
| 2 | m∠WYR = 180 |
| # | Claim | Reason |
|---|---|---|
| 1 | ZY || XW | if WX || YZ, then ZY || XW |
| 2 | m∠RYW = 180 | if m∠WYR = 180, then m∠RYW = 180 |
| 3 | m∠ZYR = m∠XWY | if ZY || XW and m∠RYW = 180, then m∠ZYR = m∠XWY |
Comments
Please log in to add comments