Proof: Parallel Then Corresponding 2
Let's prove the following theorem:
if WX || YZ and m∠WSX = 180 and m∠YTZ = 180 and m∠RST = 180, then m∠WSR = m∠YTS
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | m∠WSR = m∠STY | if WX || YZ and m∠WSX = 180 and m∠YTZ = 180 and m∠RST = 180, then m∠WSR = m∠STY |
| 2 | m∠STY = m∠YTS | m∠STY = m∠YTS |
| 3 | m∠WSR = m∠YTS | if m∠WSR = m∠STY and m∠STY = m∠YTS, then m∠WSR = m∠YTS |
Comments
Please log in to add comments