Proof: Alternate Interior Angles Theorem (Converse) 5
Let's prove the following theorem:
if WX || YZ, then m∠ZYX = m∠YXW
Proof:
Given
| 1 | WX || YZ |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | m∠WXY = m∠XYZ | if WX || YZ, then m∠WXY = m∠XYZ |
| 2 | m∠ZYX = m∠YXW | if m∠WXY = m∠XYZ, then m∠ZYX = m∠YXW |
Comments
Please log in to add comments