Proof: Unequal Angles Theorem 2
Let's prove the following theorem:
if m∠ZXY > m∠ZYX, then distance ZY > distance ZX
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | m∠ZYX = m∠XYZ | m∠ZYX = m∠XYZ |
| 2 | m∠ZXY > m∠XYZ | if m∠ZXY > m∠ZYX and m∠ZYX = m∠XYZ, then m∠ZXY > m∠XYZ |
| 3 | distance ZY > distance ZX | if m∠ZXY > m∠XYZ, then distance ZY > distance ZX |
Comments
Please log in to add comments