Proof: Tangent 5
Let's prove the following theorem:
if ∠ABC is a right angle, then tangent of (m∠CAB) = (distance CB) / (distance AB)
Proof:
Given
| 1 | ∠ABC is a right angle |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | tangent of (m∠CAB) = (distance BC) / (distance AB) | if ∠ABC is a right angle, then tangent of (m∠CAB) = (distance BC) / (distance AB) |
| 2 | distance BC = distance CB | distance BC = distance CB |
| 3 | (distance BC) / (distance AB) = (distance CB) / (distance AB) | if distance BC = distance CB, then (distance BC) / (distance AB) = (distance CB) / (distance AB) |
| 4 | tangent of (m∠CAB) = (distance CB) / (distance AB) | if tangent of (m∠CAB) = (distance BC) / (distance AB) and (distance BC) / (distance AB) = (distance CB) / (distance AB), then tangent of (m∠CAB) = (distance CB) / (distance AB) |
Comments
Please log in to add comments