Proof: Sine 4
Let's prove the following theorem:
if ∠ABC is a right angle, then sine of (m∠ACB) = (distance AB) / (distance AC)
Proof:
Given
| 1 | ∠ABC is a right angle |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | sine of (m∠BCA) = (distance AB) / (distance AC) | if ∠ABC is a right angle, then sine of (m∠BCA) = (distance AB) / (distance AC) |
| 2 | m∠BCA = m∠ACB | m∠BCA = m∠ACB |
| 3 | sine of (m∠BCA) = sine of (m∠ACB) | if m∠BCA = m∠ACB, then sine of (m∠BCA) = sine of (m∠ACB) |
| 4 | sine of (m∠ACB) = (distance AB) / (distance AC) | if sine of (m∠BCA) = sine of (m∠ACB) and sine of (m∠BCA) = (distance AB) / (distance AC), then sine of (m∠ACB) = (distance AB) / (distance AC) |
Comments
Please log in to add comments